Improving the Precision of Al-Quran Retrieval Using Latent Semantic Indexing with Background Knowledge
Abstract
The aim of this study is to test the effectiveness of Al-Quran precision retrieval using LSI with background knowledge. The primary data used during the testing is the English translation of the Al-Quran where as the English translated hadith is used as the secondary data which acts as the background knowledge. SVD that is an LSI algorithm, indexes training data to be accessed by query. Experiments conducted are encircled around the two models i.e. LSI with the background knowledge and LSI without the background knowledge. The retrieval effectiveness is measured using the standard precision and recall measuresReferences
David, A. G. ,& Ophir,F. 2004. Information Retrieval algorithms and heuristic. second edition. Netherlands. Springer.
Deerwester, S, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. A. Harshman. 1990. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):391-407.
Gao,Jing & Zhang,Jun. 2004. Clustered SVD strategies in latent semantic indexing. Journal of Information Processing and Management 41 (2005) 1051–1063.
Kumar, C.A & Srinivas.S. 2006. latent semantic indexing using eigenvalue analysis for efficient information retrieval. Journal appl. math. comput. sci., vol. 16, no. 4, 551–558.
Kontostathis,April and Pottenger,W.M. Preprint submitted to Elsevier Science 30 June 2004, A Framework for Understanding Latent Semantic Indexing (LSI) Performance.
Price, R.J and Zukas, A,E. 2005. Application of Latent Semantic Indexing to Processing of Noisy Text. Eds.: ISI 2005, LNCS 3495, pp. 602 – 603.Springer-Verlag. Berlin Heidelberg
Sembok, T.M.T. 2007. Bahasa, Kecerdasan dan makna sekitar capaian maklumat, Syarahan perdana, Universiti Kebangsaan Malaysia.
Zelikovitz, Sarah and Marquez, Finella.2005. Evaluation of Background Knowledge for Latent Semantic Indexing Classification. Journal of American Association for Artificial Intelligence.