Studi Komparatif Model Klasifikasi Kerentanan Penyakit Jantung Menggunakan Algoritma Machine Learning
Abstract
Penyakit jantung merupakan salah satu penyebab kematian baik di dunia maupun Indonesia. Perhatian awal dari penyakit jantung akan memudahkan pencegahan dan penyembuhanya. Tujuan penelitian ini adalah melakukan analisis komapratif model klasifikasi dengan berbagai algoritma machine learning untuk kerentanan penyakit jantung. Dataset diambil dari UCI machine Learning Resipatory dengan 300 data training dan 100 data testing. Parameter klasifikasi terdiri dari age, sex, systolic blood pressure, cholesterol, thalach, oldpeak dan slope, serta labelnya cardio. Model klasifikasi dibangun dengan algoritma Naïve Bayes, K-Nearest Neighbor (KNN), Decision Tree, random Forest, Backpropagation, Logistic Regression dan Support Vector machine (SVM). Hasil model klasifikasi dari pengukuran accuracy didapatkan Naïve Bayes (79,00%), KNN (63,00%), Decision Tree (66,00%), Random Forest (77,00%), Backpropagation (80,00%), Logistic Regression (81,00%) dan SVM (80,00%). Dari analisis komparatif pegukuran parameter accuracy, precision, recall dan F1 score maka model klasifikasi dengan algoritma Logistic Regression dan backpropagation menghasilkan performa terbaik.
References
Alim, M. A., Haris, A., Haider, W., & Masroor, A. (2022). A Comparative Study of Heart Disease Prediction Based on Principal Component Analysis And Classification Techniques. Webology, 19(3), 11–16. https://doi.org/10.1109/DASA54658.2022.9765241
Dissanayake, K., & Johar, M. G. M. (2021). Comparative study on heart disease prediction using feature selection techniques on classification algorithms. Applied Computational Intelligence and Soft Computing, 2021. https://doi.org/10.1155/2021/5581806
Goel, S., Deep, A., Srivastava, S., & Tripathi, A. (2019). Comparative Analysis of various Techniques for Heart Disease Prediction. 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019, 88–94. https://doi.org/10.1109/ISCON47742.2019.9036290
Hadi, F., & Diana, Y. (2019). Diagnosa Penyakit Gigi dengan Metode Bayes. SATIN – Sains Dan Teknologi Informasi Sistem Pakar, 5(2).
Hasan, R. (2021). Comparative Analysis of Machine Learning Algorithms for Heart Disease Prediction. ITM Web of Conferences, 40. https://doi.org/doi.org/10.1051/itmconf/20214003007
Hayat, C., & Latuny, A. A. (2020). Rancang Bangun Aplikasi Informasi Awal Penyakit Tulang Belakang dengan Metode Forward Chaining. SATIN – Sains Dan Teknologi Informasi, 6(1).
Khan, S. N., Nawi, N. M., Shahzad, A., Ullah, A., Mushtaq, M. F., Mir, J., & Aamir, M. (2017). Comparative analysis for heart disease prediction. International Journal on Informatics Visualization, 1(4–2), 227–231. https://doi.org/10.30630/joiv.1.4-2.66
Lestari, W., & Sumarlinda, S. (2022). Implementation of K-Nearest Neighbor (Knn) and Suport Vector Machine (Svm) for Clasification Cardiovascular Disease. International Journal of MultiSciences, 2(10), 30–36. https://archive.ics.uci.edu/ml/datasets/heart+disease.
Prusty, S., Patnaik, S., & Dash, S. K. (2022). Comparative analysis and prediction of coronary heart disease. Indonesian Journal of Electrical Engineering and Computer Science, 27(2), 944–953. https://doi.org/10.11591/ijeecs.v27.i2.pp944-953
Pulido, M., Melin, P., & Prado-Arechiga, G. (2019). Blood pressure classification using the method of the modular neural networks. International Journal of Hypertension, 2019. https://doi.org/10.1155/2019/7320365
Puskhla, V., Agaly, T., & Angayarkammii, S. A. (2019). Comparative Study of Heart Disease Prediction using Machine Learning Algorithms. International Journal of Innovation in Engineering and Technology, 12(4), 270–272. https://doi.org/10.22214/ijraset.2022.44895
Sains, S., Ariani, F., & Taufik, A. (2020). Perbandingan Metode Klasifikasi Data Mining untuk Prediksi Tingkat Kepuasan Pelanggan Telkomsel Prabayar. SATIN-Sains Dan Teknologi Informasi, 6(2), 46–54. https://doi.org/10.33372/stn.v6i2.666
Shang, Y., Jiang, K., Wang, L., Zhang, Z., Zhou, S., Liu, Y., Dong, J., & Wu, H. (2021). The 30-days hospital readmission risk in diabetic patients: predictive modeling with machine learning classifiers. BMC Medical Informatics and Decision Making, 21(Suppl 2), 1–11. https://doi.org/10.1186/s12911-021-01423-y
Sidey-gibbons, J. A. M., & Sidey-gibbons, C. J. (2019). Machine learning in medicine : a practical introduction. 4, 1–18.
Sumarlinda, S., & Lestari, W. (2022). Aplikasi K-Nearest Neighbor (KNN) untuk Klasifikasi Penyakit Kardiovaskuler. Prosiding Seminar Nasional Teknologi …, 55, 259–261. http://ojs.udb.ac.id/index.php/Senatib/article/download/1897/1487
Swathy, M., & Saruladha, K. (2022). A comparative study of classification and prediction of Cardio-Vascular Diseases (CVD) using Machine Learning and Deep Learning techniques. ICT Express, 8(1), 109–116. https://doi.org/10.1016/j.icte.2021.08.021
WHO. (2019). WHO Health Statistics Overview 2019 (pp. 1–16).
Wiharto, W., Kusnanto, H., & Herianto, H. (2017). Clinical Decision Support System for Assessment Coronary Heart Disease Based on Risk Factor. Indian Journal of Science and Technology, 10(22), 1–12. https://doi.org/10.17485/ijst/2017/v10i22/84940
Copyright (c) 2023 Wiji Lestari
This work is licensed under a Creative Commons Attribution 4.0 International License.